CS50AI - Degrees - Solution
If you have doubts refer this.Dont try to copy and answer.
Name: CS50's Introduction to Artificial Intelligence with Python
University: Harvard University
URL: https://cs50.harvard.edu/ai/2020/
My Github: https://github.com/Dinesh-Kumar-E
Automatic CS50 Submit Tool: https://github.com/Dinesh-Kumar-E/CS50-Submit
See:https://cs50.harvard.edu/college/2021/fall/syllabus/#academic-honesty
Degrees.py:
import csv
import sys
from util import Node, StackFrontier, QueueFrontier
# Maps names to a set of corresponding person_ids
names = {}
# Maps person_ids to a dictionary of: name, birth, movies (a set of movie_ids)
people = {}
# Maps movie_ids to a dictionary of: title, year, stars (a set of person_ids)
movies = {}
def load_data(directory):
"""
Load data from CSV files into memory.
"""
# Load people
with open(f"{directory}/people.csv", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
people[row["id"]] = {
"name": row["name"],
"birth": row["birth"],
"movies": set()
}
if row["name"].lower() not in names:
names[row["name"].lower()] = {row["id"]}
else:
names[row["name"].lower()].add(row["id"])
# Load movies
with open(f"{directory}/movies.csv", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
movies[row["id"]] = {
"title": row["title"],
"year": row["year"],
"stars": set()
}
# Load stars
with open(f"{directory}/stars.csv", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
try:
people[row["person_id"]]["movies"].add(row["movie_id"])
movies[row["movie_id"]]["stars"].add(row["person_id"])
except KeyError:
pass
def main():
if len(sys.argv) > 2:
sys.exit("Usage: python degrees.py [directory]")
directory = sys.argv[1] if len(sys.argv) == 2 else "large"
# Load data from files into memory
print("Loading data...")
load_data(directory)
print("Data loaded.")
source = person_id_for_name(input("Name: "))
if source is None:
sys.exit("Person not found.")
target = person_id_for_name(input("Name: "))
if target is None:
sys.exit("Person not found.")
path = shortest_path(source, target)
if path is None:
print("Not connected.")
else:
degrees = len(path)
print(f"{degrees} degrees of separation.")
path = [(None, source)] + path
for i in range(degrees):
person1 = people[path[i][1]]["name"]
person2 = people[path[i + 1][1]]["name"]
movie = movies[path[i + 1][0]]["title"]
print(f"{i + 1}: {person1} and {person2} starred in {movie}")
def shortest_path(source, target):
"""
Returns the shortest list of (movie_id, person_id) pairs
that connect the source to the target.
If no possible path, returns None.
"""
start = Node(state=source, parent=None, action=None)
frontier = QueueFrontier()
frontier.add(start)
explored = set()
while True:
if frontier.empty():
return None
node = frontier.remove()
if node.state == target:
rt = []
while node.parent is not None:
rt.append((node.action, node.state))
node = node.parent
rt.reverse()
return rt
explored.add(node.state)
# find neighbours
neighbours = neighbors_for_person(node.state)
# add neighbours to frontier
for action, state in neighbours:
if not frontier.contains_state(state) and state not in explored:
child = Node(state=state, parent=node, action=action)
if child.state == target:
rt = []
while child.parent is not None:
rt.append((child.action, child.state))
child = child.parent
rt.reverse()
return rt
frontier.add(child)
def person_id_for_name(name):
"""
Returns the IMDB id for a person's name,
resolving ambiguities as needed.
"""
person_ids = list(names.get(name.lower(), set()))
if len(person_ids) == 0:
return None
elif len(person_ids) > 1:
print(f"Which '{name}'?")
for person_id in person_ids:
person = people[person_id]
name = person["name"]
birth = person["birth"]
print(f"ID: {person_id}, Name: {name}, Birth: {birth}")
try:
person_id = input("Intended Person ID: ")
if person_id in person_ids:
return person_id
except ValueError:
pass
return None
else:
return person_ids[0]
def neighbors_for_person(person_id):
"""
Returns (movie_id, person_id) pairs for people
who starred with a given person.
"""
movie_ids = people[person_id]["movies"]
neighbors = set()
for movie_id in movie_ids:
for person_id in movies[movie_id]["stars"]:
neighbors.add((movie_id, person_id))
return neighbors
if __name__ == "__main__":
main()
Comments
Post a Comment